Question Number	Answer		Mark
1(a)	Increasing d will lead to a decrease in C Or see $Q/V = k/d$	(1)	
	Since $C = Q/V$ (a decrease in C) means a decrease in the charge on the capacitor Or if V is constant (a decrease in C) means a decrease in charge on	(1)	
	capacitor		2
1(b)	Use of $C = k/d$ with $d = 4.2$ (mm) use of $Q = CV$ with $V = 6$ V or cancelled later use of $\Delta Q/Q$ or $\Delta C/C$ % change = 17% <u>Example of calculation</u> $Q = \frac{6 V \times 2.8 \times 10^{-15} \text{ F m}}{3.5 \times 10^{-3} \text{ m}} = 4.8 \times 10^{-12} \text{ C}$ $Q = \frac{6 V \times 2.8 \times 10^{-15} \text{ F m}}{4.2 \times 10^{-3} \text{ m}} = 4.0 \times 10^{-12} \text{ C}$ $\frac{4.8 \times 10^{-12} \text{ C} - 4.0 \times 10^{-12} \text{ C}}{4.8 \times 10^{-12} \text{ C}} = 16.7\%$	(1) (1) (1) (1)	4
1(c)	(rapid changes in position) mean that rapid changes in Q		
	Or a shorter time to charge/discharge	(1)	
	(small C gives) shorter time constant/RC	(1)	2
	Total for question 13		8

Question Number	Answer		Mark
2(a)	Use of $C=Q/V$ V=15 V Use of $W = QV/2 \text{ Or } W = CV^2/2 \text{ Or } W = Q^2/2C$ $W = 2.5 \times 10^{-5} \text{ J}$ (candidates who use $6.6 \times 10^{-6} \text{ C}$ can only score MP1 and MP3) <u>Example of calculation</u> $V = Q/C = 3.3 \times 10^{-6} \text{ C} / 220 \times 10^{-9} \text{ F}$ V = 15 V $W = QV/2 = (3.3 \times 10^{-6} \text{ C} \times 15 \text{ V})/2$ $W = 2.5 \times 10^{-5} \text{ J}$	(1) (1) (1) (1)	4
2(b)	$Q = 0.2 Q_0 \text{ Or } Q = 6.6 \times 10^{-7} \text{ C}$ Use of $Q = Q_0 \text{ e}^{-t/RC}$ t = 7.1 s (candidates who use $Q = 0.8 Q_0$ can only score MP2) $\frac{\text{Example of calculation}}{Q = 0.2 Q_0}$ $Q = Q_0 \text{ e}^{-t/RC}$ $0.2 Q_0 = Q_0 \text{ e}^{-t/RC}$ $\ln (0.2) = -t/(20 \times 10^6 \Omega \times 220 \times 10^{-9} \text{ F})$ t = 7.1 s	(1) (1) (1)	3
2(c)	Either refers to $W = Q^2/2C$ Or $W \propto Q^2$ If Q halves, $W \rightarrow Q^2/8C$ Or halving Q quarters W (Since W becomes a quarter in the time for Q to half) it takes less time for the energy to halve than the charge to halve. (dependent mark on either MP1 or MP2) Or Refers to $W = QV/2$ Q and V both decrease over time W will decrease faster so takes less time to half in value. (dependent mark on either MP1 or MP2)	(1) (1) (1) (1) (1) (1)	3
2(d)	Synchronous readings Or data logger records readings at exact time Or voltmeter and stop watch need 2 people and data logger only one More readings can be taken in a shorter time Or higher sampling rate (treat as neutral any reference to graph plotting automatically, human reaction time or accuracy)	(1) (1)	2
	Total for question 15		12

Question Number	Answer		Mark
3(a)(i)	Use of $Q = CV$ Q = 3900 (C)	(1) (1)	2
	Example of answer $Q = 1500 \text{ F} \times 2.6 \text{ V}$ Q = 3900 C		
3(a)(ii)	Straight line through the origin Passing through 2.6 V and answer to (a)(i) or 4000 C	(1) (1)	2
3 (a)(iii)	Use of $W = QV/2$ Or $W = CV^2/2$ Or use of area under graph $W = 5.1$ kJ (use of 4000 C gives $W = 5.2$ kJ (allow ecf from (a)(i))	(1) (1)	2
	$\frac{\text{Example of answer}}{W = 3900 \text{ C} \times 2.6 \text{ V} / 2}$ $W = 5070 \text{ J}$		
3(b)(i)			
	Exponential decay Current decreases by equal fractions in equal time intervals	(1) (1)	2
3(b)(ii)	See attempt of I_0/e	(1)	
	Finds time (accept 0.75-0.80s)	(1)	
	Use of $\tau = RC$	(1)	
	$R = 0.0005 \ \Omega$	(1)	
	Or		
	Finds the time for I_0 to half	(1)	
	Uses $t_{1/2} = \tau \ln 2$	(1)	
	Use of $\tau = RC$	(1)	
	$R = 0.00050 - 0.00053 \ \Omega$	(1)	
	Or		
	See attempt of 37% of 5400 A	(1)	
	Finds time (accept 0.75 to 0.80 s)	(1)	
	Use of $\tau = RC R = 0.0005 - 0.00053\Omega$	(1)	
	Or D	(1)	
	Draws tangent at $t = 0$ to meet time axis.		
	Records intercept of tangent with axis (accept 0.6 s - 0.9 s) Use of $\tau = RC$	(1)	4
	$R = 0.0004 \Omega - 0.0006 \Omega$	(1) (1)	
	$\mathbf{N} = 0.0004 \ \Omega 2 = 0.0000 \ \Omega 2$	(1)	
	reads a value off the y-axis and corresponding time	(1)	
	Subs into formula using 5400 (A) to find RC	(1)	
	Substitutes for C to find R	(1)	
	$R = 0.00050 \ \Omega - 0.00058 \ \Omega$	(1)	
		(1)	
	Example of calculation		
	37% of 5400 A is 1998 A	(1)	
	Time to fall to this value is 0.75 s	(1)	
	RC = 0.75 s	(1)	
	$R = 0.75 \text{ s} / 1500 \text{ F} = 0.0005 \Omega$	(1)	

2()	Max 3		
3(c)	Ultracapacitor used for: overtaking Or going up a hill Or starting (from rest) Or accelerating. Because this requires a large <u>current/power</u> . Batteries used for travelling at constant speed Because this requires a small <u>current/power</u> for a longer time	(1) (1) (1) (1)	3
	Total for question 17		15

Question Number	Answer		Mark
4(a)(i)	Capacitor, resistor, supply and switch all in series (ignore voltmeter) Voltmeter directly across capacitor	(1) (1)	2
4(a)(ii)	Datalogger allows large number of readings to be taken Or graph can be plotted directly/automatically Or simultaneous reading of <i>t</i> and <i>V</i> can be taken Or idea that people can't record quickly enough, (treat as neutral accuracy, precision misreading or human reaction time)	(1)	1
4(b)	Use of $C = Q/V$ $Q = 5.0 \times 10^{-4} \text{ C}$ <u>Example of calculation</u> $Q = 100 \times 10^{-6} \text{ F} \times 5.0 \text{ V}$ $Q = 5.0 \times 10^{-4} \text{ C}$	(1) (1)	2
4(c)(i)	Use of $I = \Delta Q / \Delta t$ e.c.f their value of C from (b) I = 0.05 A (accept recalculation of Q using $V = 4.90 \text{ or } 4.95 \text{ V}$) <u>Example of calculation</u> $I = 5.0 \times 10^{-4} \text{ C} / 10 \times 10^{-3} \text{ s}$ I = 0.05 A	(1) (1)	2
4(c)(ii)	tangent drawn at t = 0 $\Delta V / \Delta t = 2000 - 3300 \text{ V s}^{-1}$ Initial current = 0.22 - 0.28 A (MP2 & 3 can be scored even if no tangent drawn) (No credit for exponential calculation) <u>Example of calculation</u> $\Delta V / \Delta t = 1.1 \text{ V} / 0.5 \text{ ms} = 2200 \text{ V s}^{-1}$ $I = (\Delta V / \Delta t) \times \text{C}$ $I = 2200 \text{ V s}^{-1} \times 100 \times 10^{-6} \text{ F}$ I = 0.22 A	(1) (1) (1)	3
4(c)(iii)	Use of $V = IR$ using answer from (ii) correct evaluation of R (5V used with current range in (ii) gives 18 - 23 Ω) <u>Example of calculation</u> 5 V = 0.22 A × R	(1) (1)	2
PhysicsAnd	Maths Tutor.com Total for question 14		12

Question Number	Answer		Mark
5(a)(i)	Use of $t=RC$	(1)	
- ()(-)		(-)	
	Use of $T=1/f$ Or $f=1/t$	(1)	
	Comparison of 2.2 $x10^{-4}$ (s) << 2.5 $x10^{-3}$ (s)		
	Comparison of 2.2 x10 (s) $<< 2.5 x10$ (s) Or comparison of 400 (Hz) $<< 4500$ (Hz)		
	Or reference to nRC (needed for complete discharge) where $n = 3 - 11$		
	Or $e^{-T/t}$ is a very small value	(1)	3
5(a)(ii)	See $C = Q/V$ Or $Q = CV$	(1)	
	See $Q = It$	(1)	
	See $t = 1/f$ Or $f = 1/t$	(1)	3
	(Answers based on $t = RC$ and $V = IR$ scores 0)		
5(a)(iii)	sub in $C = I/fV$	(1)	
	$C = 2.7 \ \mu F$	(1)	2
	Example of calculation		
	$\frac{\text{Example of calculation}}{\text{C} = 5.4 \times 10^{-3} \text{ A/ (400 s}^{-1} \times 5.0 \text{ V)}}$		
	$C = 2.7 \ \mu F$		
5(a)(iv)	$2.2 + 30\% = 2.9 (\mu F)$		
	Or shows that 2.7 (uF) is +22% of 2.2 (uF)	(1)	
	Within tolerance / consistent	(1)	2
	(2nd mark can only be awarded following an attempt at either of the above	(-)	_
	calculations)		
	If candidates make an error in (iii) allow full ecf with a valid comment		
	based on their values.		
5(b)	Use of $\frac{1}{2}CV^2$	(1)	
	$W = 3.4 \times 10^{-5} J$	(1)	2
	(allow ecf from (iii) or use of 2.2 μ F \rightarrow 2.75 × 10 ⁻⁵ J)		
	Example of calculation		
	$W = \frac{1}{2} 2.7 \ \mu F \times (5.0 \ V)^2$		
	$W = 3.4 \times 10^{-5} J$		
	Total for question 16		12

Question Number	Answer	Mark
6(a)	Method marks only Use of $Q=CV$ with $V=16$ V(1)Max value of $C = 12000 \ (\mu F)$ (1) μF means 10^{-6} conversion of μF to F(1) $\underline{Example of calculation}$ $C_{max} = 1.20 \times 10000 = 12000 F$ $C_{max} = 12000 F \times 16 V$ 	3
6 (b)	Either use of $\frac{1}{2} QV$ or $\frac{1}{2} CV^2$ (1) Energy = 1.5 J (1) Example of calculation $W = \frac{1}{2} 0.192 \text{ C} \times 16 \text{ V}$ Energy = 1.54 J	2
	Total for question 13	5